2015
题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\)
\(ij\)都爆int了....
一开始想容斥一下用\(d(i)\)和\(d(j)\)算\(d(ij)\),发现不行... 然后翻题解看到了一步好神的转化:\[ d(nm) = \sum_{i\mid n} \sum_{j\mid m} [gcd(i,j)=1] \] 晚上再补吧还是没拿草稿纸... 补:\(Proof.\)- 首先注意约数个数 相同的算一个 约数个数公式\(\prod (a_i+1)\) 考虑一个质因子,\(p^x,p^y \rightarrow p^x p^y\)\(x+y+1\)对应了\(gcd(p^x, 1)...gcd(1, 1)...gcd(1,p^y)\) 质因子相互独立,乘起来
然后愉♂悦的套路推♂倒
\[ \begin{align*} \sum_{i=1}^n \sum_{j=1}^m d(ij) &= \sum_{i=1}^n \sum_{j=1}^m \sum_{x\mid i} \sum_{y\mid j} [gcd(x,y)=1]\\ 先枚举约数,交换i,j\ x,y\\ &=\sum_{i=1}^n \sum_{j=1}^m \sum_{d\mid i,d\mid j}\mu(d) \frac{n}{i} \frac{m}{i}\\ &=\sum_{d=1}^n \mu(d)\sum_{i=1}^\frac{n}{i} \sum_{j=1}^\frac{m}{i} \frac{n}{id}\frac{m}{jd}\\ &=\sum_{d=1}^n \mu(d) f(\frac{n}{id})f(\frac{m}{jd})\\ \end{align*} \] 问题就是\(f(n)=\sum_{i=1}^n\frac{n}{i}\)怎么求了 可以n根n预处理... 更巧妙的做法是,发现\(f\)就是\(d\)的前缀和,因为\(\frac{n}{i}\)表示的就是\(1..n\)有几个i的倍数#include#include #include #include using namespace std;const int N=5e4+5;typedef long long ll;#define pii pair #define MP make_pair#define fir first#define sec secondinline int read(){ char c=getchar();int x=0,f=1; while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();} while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();} return x*f;} int n, m;int notp[N], p[N], mu[N]; ll f[N]; pii lp[N];void sieve(int n) { mu[1] = 1; f[1] = 1; for(int i=2; i<=n; i++) { if(!notp[i]) p[++p[0]] = i, mu[i] = -1, f[i] = 2, lp[i] = MP(i, 1); for(int j=1; j<=p[0] && i*p[j]<=n; j++) { int t = i*p[j]; notp[t] = 1; if(i%p[j] == 0) { mu[t] = 0; lp[t] = MP(p[j], lp[i].sec + 1); f[t] = f[i] / (lp[i].sec + 1) * (lp[t].sec + 1); break; } mu[t] = -mu[i]; lp[t] = MP(p[j], 1); f[t] = f[i] * (lp[t].sec + 1); } } for(int i=1; i<=n; i++) mu[i] += mu[i-1], f[i] += f[i-1];}ll cal(int n, int m) { ll ans=0; int r; for(int i=1; i<=n; i=r+1) { r = min(n/(n/i), m/(m/i)); ans += (mu[r] - mu[i-1]) * f[n/i] * f[m/i]; } return ans;}int main() { //freopen("in","r",stdin); sieve(N-1); int T=read(); while(T--){ n=read(); m=read(); if(n>m) swap(n, m); printf("%lld\n",cal(n, m)); }}